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Istituto Agrario di S. Michele a/A, S. Michele, Via E. Mach 2, 38010, Italy; Institut für Ionenphysik,
Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria; and Department of

Plasmaphysics, University of Bratislava, SK-84248 Bratislava, Slovak Republic

Proton transfer reaction-mass spectrometry (PTR-MS) measurements on single intact strawberry
fruits were combined with an appropriate data analysis based on compression of spectrometric data
followed by class modeling. In a first experiment 8 of 9 different strawberry varieties measured on
the third to fourth day after harvest could be successfully distinguished by linear discriminant analysis
(LDA) on PTR-MS spectra compressed by discriminant partial least squares (dPLS). In a second
experiment two varieties were investigated as to whether different growing conditions (open field,
tunnel), location, and/or harvesting time can affect the proposed classification method. Internal cross-
validation gives 27 successes of 28 tests for the 9 varieties experiment and 100% for the 2 clones
experiment (30 samples). For one clone, present in both experiments, the models developed for one
experiment were successfully tested with the homogeneous independent data of the other with success
rates of 100% (3 of 3) and 93% (14 of 15), respectively. This is an indication that the proposed
combination of PTR-MS with discriminant analysis and class modeling provides a new and valuable
tool for product classification in agroindustrial applications.
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INTRODUCTION

Quality control, variety selection, product development, etc.,
are typical areas of food production in which it is important to
compare samples under study with previously identified refer-
ences and to monitor whether there exist differences in order
to take on site corresponding decisions. This issue can be
approached in two different ways depending on goals and the
resources available: on the one hand, a few quickly measurable
quantities such as, for fruits, sugar content, acidity, and firmness
(1) or, on the other hand, more advanced and sensitive methods
(GC, GC-MS, enzymatic tests, sensory analysis, etc.) yielding
more detailed information (2). The investment in time and
money needed for the latter imposes usually strong restrictions
and often limits the applicability to only a few, statistically
selected samples. There exist strong efforts in the scientific
community to improve this situation by developing fast,
sensitive, and nondestructive techniques that can be used
routinely for real time evaluation and classification of the food
samples (3). In this context the evaluation of volatile organic
compounds (VOCs) provides a good way to check the samples,
because the amount of VOCs is often connected both with their

intrinsic properties (e.g., ripening degree, defects, shelf life
evolution, effect of treatments) and with the quality perceived
by the consumer (see, e.g., ref4 and reference cited therein). A
classical example, in the context of the present studies, is the
use of spectroscopic methods (5).

Mass spectrometry based on traditional electron impact
ionization usually has the disadvantage that the VOC molecules
to be analyzed are strongly fragmented in the ionization process
and thus the analysis, without additional measures (e.g.,
separation prior to measurements), is difficult in the case of
complex mixtures. Nevertheless, there exist situations in which
this method has been considered (6). On the other hand, previous
investigations demonstrated that on-line analysis of VOCs of
potential agroindustrial interest can be successfully performed
(7, 8) by the relatively new method of proton-transfer reaction
mass spectrometry (PTR-MS) (9), and we have shown that a
multivariate analysis of PTR-MS spectra allows interesting
product discrimination for fruit juices treated with different
preserving methods (10). The successful use of this method is
mainly due to the high sensitivity (11), to the fact that sample
pretreatment is not necessary (9), and, above all, to the fact
that fragmentation of the molecules in the mass spectrometric
detection process is strongly reduced as compared to that in
conventional ionization techniques (12). Because of these
advantages we extended here our previous PTR-MS studies in
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order to further evaluate the potentiality of PTR-MS in the
agroindustrial field.

As a case study we evaluate here the possibility to distinguish
different strawberry cultivars on the basis of measured PTR-
MS spectra analyzed with a particular implementation of a
discriminant partial least-squares (dPLS) multivariate analysis.
We closely follow the ideas reported by Beebe and Kowalsky
(13) in the form described by Kemsley (14) and implemented
in the software WINDAS (15). An exhaustive review of these
methods can be found in Kemsley’s book (14) and references
cited therein.

The presently introduced technique to carry out measurements
and analysis on single fruits (of strawberries) is also of
importance, because consumer judgment is on single fruits and
not on batch averages (usual quality control methods refer to
this). In this sense fruit-by-fruit variability (and thus its control)
is crucial for cultivar qualification (16). We believe that the
fast and individual measurement, the total absence of pretreat-
ment (strawberries are virtually unaffected by the measurement
process), and the promising discriminative power of the
proposed approach are good bases for the development of an
on-line quality/product control method which indeed may be
implemented in the agroindustrial processing of fruits and
vegetables.

MATERIALS AND METHODS

Samples.In the present study we have carried out two different
sets of experiments, that is, one with nine cultivars where only three
samples (fruits) per cultivar were collected at the same time, and a
second one with two cultivars but from different batches.

Experiment 1.On May 24, 2002, strawberry fruits of nine different
clones were collected in the experimental open field of the Istituto
Sperimentale per la Frutticoltura (ISF) located in Forlı̀ (Cesena, Italy)
and immediately transported to the Agronomic Institute of S. Michele
a/A, where measurements took place after 2 days of storage. The
samples were stored between harvesting and the actual measurement
at 4°C. When these fruits were picked, no specific criteria for selection
of the fruits were applied except for a rough evaluation of a proper
ripening and the absence of evident defects or peculiarities. One of the
clones was a commercial variety (Patty); the other ones were selections
under evaluation by the ISF. The latter ones are here indicated by a

short code, that is, CS2, CS10, CS7, CS4, VR1, VR2, and VR5. In
Table 1, we report corresponding exact codes and the parents of the
selected clones; full names indicate commercial varieties. Eight clones
wereFragaria × ananassa,but we also included samples, indicated
by FB, of aFragaria Vescaclone (closely related to the typical wild
strawberry). These latter fruits showed a more pronounced evolution
in time (drying) compared to the more stableFragaria × ananassa. In
contrast to other studies (17) that compared different commercial
cultivars, we have here (besides Patty and FB) seven genotypes which
have a rather close relationship to each other, two of them being even
“brothers” (Table 1).

Experiment 2.Here, we collected fruit samples of two cultivar (CS2,
same as above, and Miss, a commercial variety) at three different times,
grown at two different locations (Cesena, Italy, and Verona, Italy) with
two different cultivation methods (tunnel and open field). SeeTable 2
for details. The fruit samples were stored between harvesting and the
actual measurement at 4°C. A first set of measurements took place
within the first 24 h after harvesting and a second one after 3-4 days;
this time delay should represent a typical situation for the fruits to reach,
on average, the consumer’s table. For one batch (batch A inTable 2)
we have carried out for both clones additional measurements on days
2, 3, 5, 6, 8, 9, and 12 after harvest.

Measurements.PTR-MS is a mass spectrometric technique based
on a particular implementation of chemical ionization using proton
transfer from protonated water ions to the volatile substance to be
detected. It has been described in many papers (9, 18), and there exists
also some literature concerning agroindustial applications [see, e.g.,
the review of Dunphy (19)]. The instrument used here is a standard
commercial PTR-MS machine supplied by Ionicon Analytik GmbH,
Innsbruck, Austria.

The usual measuring procedure involves first removing the fruits
from the 4 °C storage space. After the fruits has remained at room
temperature for∼2 h, one fruit is put for 1 h in a glass vessel (400
mL) provided with two PTFE/silicone septa on opposite sides. After 1
h, the inlet of the PTR-MS was then connected by a1/8 in. PTFE tube
heated to 70°C with this glass vessel, and the headspace was
continuously extracted for 4 min at 9.3( 0.1 sccm (corresponding to
the acquisition of five complete spectra); the extracted headspace gas
was replaced by laboratory air. To avoid possible systematic memory
effects from one measurement to the next, the apparatus was flushed
with laboratory air for 15 min between measurements, replicate order
was randomized, and we used different glass vessels for each fruit.
Spectra have been collected between subsequent measurements to
control the decay of the signal to the background level.

Table 1. Samples Used for Experiment 1: Comparison of Nine Selectionsa

code species variety parental ? parental /

no. of measured
fruit samples

FB Fragaria vesca 3
CS2 Fragaria × ananassa 94,568,2 Miss × USB 35 3
CS10 Fragaria × ananassa 96,62,10 91,143,5 × Miss 4
CS7 Fragaria × ananassa 96,62,7 91,143,5 × Miss 3
CS4 Fragaria × ananassa 97,269,4 Darselect × 91,143,3 3
VR1 Fragaria × ananassa VR 96,57,1 91,143,5 × 89,250,2 3
VR2 Fragaria × ananassa VR 96,58,2 91,143,5 × 90,608,1 3
VR5 Fragaria × ananassa VR 97,64,5 Darselect × 89,384,20 3
Patty Fragaria × ananassa Patty (91,290,2) Marmolada × Honeoye 3

a The short codes used in the paper are given in the first column. Commercial varieties are indicated by their names; selections under evaluation are indicated by their
codes. No variety designation is available for the F. vesca fruits.

Table 2. Data for the Fruit Samples Used for Experiment 2: Comparison of Two Varieties (CS2 and Miss) from Three Different Batchesa

batch harvest date 1st measurement 2nd measurement
cultivation
method produced in

A April 29, 2002 April 29, 2002 May 4, 2002 tunnel Verona
B May 9, 2002 May 10, 2002 May 13, 2002 tunnel Cesena
C May 17, 2002 May 17, 2002 May 21, 2002 open field Cesena

a Measurements on days 2, 3, 5, 6, 8, 9, and 12 after harvesting are also available for batch A.
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We consider here spectra from a mass/charge ratio of 29 to 181
amu. We estimated the concentration in parts per billion using the
relation (9)

wherek is the reaction constant for the proton exchange reaction,t is
the drift time in the reaction chamber, [C+] is the measured ion intensity
(counts/s), [H3O+] is the intensity of the primary ion beam (counts/s),
KB is the Boltzmann constant,T is the drift tube temperature, andP is
the drift tube pressure. We use the same valuek ) 2 × 10-9 cm3/s for
all masses. This produces a systematic error that is for many compounds
<30% (9) and not important for the proposed data analysis which
requires only that the measuring conditions are constant. For masses
32 and 37 this equation cannot be applied as mass 32 is due to residual
oxygen ions and mass 37 corresponds to water dimer ions and thus is,
for fixed experimental conditions, a relative indication of the water
content of the measured volatile mixture. We did not subtract
background signals because the used data analysis is not sensitive to
constant signals. We point out that all of the present measurements
have been carried out with single, intact, strawberry fruits without any
pretreatment.

Data Analysis. The problem of finding significant groups in data
and to analyze subsequent measurements in terms of the presence of
these groups is important in many fields ranging from quality control
to social sciences (20). Several techniques have been proposed, but no
general criteria can be given for the choice of a particular technique in
a specific application. In this work we follow the ideas and notation
used by Kemsley (14).

For spectroscopic or mass spectrometric data we are usually
confronted with high dimensional data sets, that is, with a great number
of data points (called here variates) for each sample, that is, the intensity
of many peaks in a mass spectrum. Moreover, variates are often strongly
intercorrelated. To handle such data and to reduce the intercorrelation
among the considered variates, the analysis can be divided into two
phases: (a) data compression to reduce the dimensionality using new
variates called loading and (b) discriminant analysis to identify groups.
For data compression we used principal component analysis (PCA) in
both correlation (PCAcor) and covariance (PCAcov) forms (21) and
discriminant partial least-squares (dPLS) analysis, which is a restriction
of the partial least-squares technique of multivariate calibration (22).
Due to the bias possibly introduced by the group information, dPLS is
more likely affected by overfitting, but it is more selective in finding
the variates responsible for group differences. Linear discriminat
analysis (LDA) was performed by attributing single data points to the
closest group. The distance is defined, here, as the distance between
the test point under consideration and the center of the group, and we
tested three possible distances: Euclidean, Manhattan, and Mahalanobis
(14).

The potential danger of the described approaches is that the models
could force the data fitting (overfitting) using not significant fluctuation
or differences. This can be often the case in multivariate analysis
because the number of observed variables (here the intensities of the
spectral peaks) is usually much higher than the number of observations
(14).

An important question in this context is, how many PLS scores (or
PCA scores) should we use to obtain as much information as possible
without overfitting the model? Statistical considerations can give an
estimate of the confidence of the model, but they rely on assumptions
(normality) that may not be correct or are difficult to check in the case
one does not have many measurements. In ref14 a decision tree is
proposed that, on the basis of the number of variates (here the number
of mass/charge ratios in the considered spectrum), the number of
observations, and the number of groups, allows the analyst to understand
if the model is likely affected by overfitting or not; the answer is,
however, only indicative, and further tests are necessary to confirm
whether overfitting is present or not. A safe approach, which assumes
only data independence, is to use internal cross-validation: all samples
but one are used to build the model, and the remaining sample is used
to test it; the process is repeated for all samples in a row. The percentage
of success gives a confidence number for the group structure introduced
by the analysis as PLS input. We will use this approach.

Our previous experiments (10) showed better performances of
discriminant analysis for PTR-MS spectra if the data were normalized
to unit area before further treatment. This is reasonable because this
can easily take account of effects related, for example, to fruit size
and surface, and this turned out to be true also here, so we will skip
the discussion and presentation of data not normalized. Most of the
data analysis has been performed by the software WINDAS (15) and
partly by other statistical software [Statistica (23)] and standard data
sheet and visualization software.

RESULTS AND DISCUSSION

We started with a simple data exploration by looking at the
first four scores for all of the samples of experiment 1 with all
three methods implemented in the WINDAS program: PCA
correlation mode (Figure 1), PCA covariance mode (Figure
2), and dPLS (Figure 3); different symbols indicate different
groups; solid bigger points indicate the group center (this point
corresponds to the average of the single measurements for that
group), and smaller open points indicate single measurements.
Some features of the data are evident and suggest that we have
a good basis for further dicriminant analysis.F. Vescasamples
(squares) are well separated by the first two scores in dPLS
and PCAcor showing, however, poor clustering, whereas in
PCAcov they are better separated by the third score and well
clustered by the second and first scores. Patty (circle) and CS10
(pentagons) form also clear clusters: the various measurements
are close together and well separated from other varieties that
seem to belong to a single cluster if we consider only the first
two scores. Using however more scores, other groups can be
separated as well, for example, CS4 (stars) in PLS1× PLS2
overlap with VR2 (down triangles), but using PLS3× PLS4,
we notice a clear separation of these two clones. The same holds
for several other groups.

Just by looking at these graphs we cannot easily derive the
minimum number of loadings needed to have a maximum
efficiency of the model without entering the overfitting region.
Scree plots (plot of explained variance as a function of the
number of used loadings) give a first insight into this problem:

Figure 1. First four PCA (correlation mode) scores for analysis of nine
strawberry genotypes. Different symbols indicate different clonessopen
points for the single data and bigger solid points for their average.

ppb) {1/(kt)}{[C+]/[H3O
+]}{(109(KB)T)/P} (1)
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that is, the points where the graph slope changes give a rough
indication of the number of dimensions that one has to take
into account (24).Figure 4 shows that for PCA (covariance
mode) the first 5 or 6 loadings contain all of the information
(but in this case small but accurate signals can be lost); on the
contrary, dPLS and PCAcor give similar results and indicate
that it can be reasonable to go up to 8-10 loadings.

Other information on this point can be obtained by plotting
the percentage of successful attributions of measurements to
the right group versus the number of scores used. We did this

for the three possible compression methods (PCAcov, PCAcor,
and dPLS) and for three different ways for measuring distances
(Euclidean, Manhattan, and Mahalanobis). The first four scores
seem to do most of the work for all compression methods, but
again up to eight or more are needed to reach a maximum.
Euclidean distances are less effective, and all methods, even if
a high number of dimensions are used, fail in one (PCAcor and
dPLS) or two cases (PCAcov).

This first data exploration indicates that all methods used
show a similar performance, in particular PCAcor and dPLS
(Figures 1 and3), indicating that the total variance (used by
PCAcor) is induced mainly by the difference among groups
(enlightened by dPLS).

The key check is a cross-validation test that we performed
by LDA analysis on 10 PLS scores and Euclidean distances,
the more conservative approach. We are surely in a region where
overfitting can be a problem, and only the results of the test
will say if this is the case. The classes are here the nine different
genotypes. Every strawberry was attributed to the right group
except one VR5 sample, giving a success percentage of 96.4%
(27 of 28). The wrongly assigned sample is the same one that
was wrongly attributed in the training phase, even with a high
number of scores, and is indicated by an arrow inFigure 3.
There is obviously no reason to expect better results in the test
phase than in the training phase. It is, however, interesting to
notice that this sample is not “wrong enough” to avoid proper
classification when used in the training phase.

Are the observed differences due to the genetic and a really
phenotypic expression of the different clones? Or are they
attributable, having measurements on only a few samples, to
differences in ripening degree, size, physiological and pathologi-
cal conditions, etc.? The second presented experiment tries to
answer this question. Now we consider only two genotypes,
Miss and CS2, but three different batches collected at different
times, in different places, and produced in different ways (Table
2). Moreover, we measured the strawberry after harvesting and
then again after 4 days (3 days at 5°C and 1 day at room
temperature). For one batch we have also measurements for
additional days after the harvest. Every measurement is on a
different single intact fruit and done under the same experimental
condition as in the previous experiment. The goal is to have
the maximum variability that we can expect for commercial
fruits produced in a certain region (Po Valley, northern Italy)
and see if even in this case the promising results of the first
experiment are confirmed.

It turns out that all three data compression methods discrimi-
nate unambiguously the two varieties (CS2 and Miss) using just

Figure 2. First four PCA (covariance mode) scores for analysis of nine
strawberry genotypes. Different symbols indicate different clonessopen
points for the single data and bigger solid points for their average.

Figure 3. First four PLS scores for analysis of nine strawberry genotypes.
Different symbols indicate different genotypessopen points for the single
data and bigger solid points for their average. The arrows indicate the
only sample that is not correctly attributed both in the training and in the
test phase.

Figure 4. Scree plot for the three data compression methods used.
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the first two scores and LDA gives a percentage of right
assignment of 100%. Nevertheless, some structures in the data
are evidently also related to the different production batches.

In Figure 5, for instance, the first two PCA (correlation mode)
scores for the three batches at the first day of measurement are
reported. A possible structure induced by different batches is
confirmed by the following analysis.

For each batch we randomly chose three of five points as
training set and use the remaining two data as the test set. The
analysis with dPLS and discriminant analysis indicates that (a)
we need three PLS scores for completely correct assignment of
the measurements of the training set to the right clone and batch,
(b) all test measurements are attributed to the right clone starting
with five or more PLS scores (LDA, Euclidean distance), and
(c) different batches are sometimes mixed. In particular, for the
first day batch A (Miss) is not completely distinguished from
batch C (Miss), and batch C (CS2) is confused with batch A
(CS2). Batches A (for CS2) and B (for both clones) are well
separated. In total 3 of 12 tests are wrongly assigned; for the
fourth measurement day the different batches are less separated
(5 wrong tests of 12). This seems to be a constant in our
measurements: we noticed that often measurements on the first
day have a rather large variance that tends to decrease in
successive days. This could be connected to postharvest stress,
to differences in treatments and ripening that are smoothed
during preservation, and, in general, with the high metabolic
rate observed for strawberry (16).

To follow this up we carried out additional measurements
on batch A on days 2, 3, 5, 6, 8, 9, and 12 for both clones CS2
and Miss. It is interesting to note that, applying again discrimi-
nant analysis on the compressed data (dPLS on all Miss and
CS2 data defining four groups: CS2 first day, CS2 fourth day,
Miss first day, and Miss fourth day, followed by LDA on five
PLS scores), of these independent measurements all of the data
are attributed to the right clones but only when using for
comparison the data point corresponding to the fourth day. This
is first evidence that fresh fruits are systematically different from
fruits being stored for>1 day (stored at 4°C or at room
temperature). In other words: the model developed for fruits
at the fourth day after harvest works for all other data points
except for the data point obtained on the first day, indicating
that this data point constitutes its own class.

The results of the second experiment show that even with
the high differences in location, harvesting, measuring time, and

cultivation methods the two investigated varieties are well
separated using only their PTR-MS fingerprint. Differences
among batches are also evident but, for the present, they cannot
be unambiguously attributed to specific experimental parameters.
There is also evidence that measurements on the first day before
storage exhibit a greater variance and tend to form a group
separated from the other measurements.

As CS2 was present in both experiments, we can perform a
last, conclusive, cross-validation test to see if the model
developed in one experiment can explain the data collected in
the other. In this case the independence of the measurements
(training and test) is complete (different harvesting time,
different measuring session, different fields, etc.). InFigure 6
we see that all three data points of experiment 1 for CS2 (small
stars) are attributed to the right group and, again, to the group
corresponding to measurements after 4 days. We remind the
reader that measurements of the first experiment were performed
on the third to fourth day after harvesting and the test can be
considered completely successful: single fruits are assigned to
the right variety.

On the other hand, we can use the CS2 measurements of
experiment 2 as a test on the model developed in experiment 1
(LDA with Euclidean distance on 10 PLS scores on the 9 classes
defined by the 9 genotypes).

For the data of the first day we have only 12 of 16 (75%)
successes, but actually in the first experiment we do not have
data on fresh fruits and so the model has not been developed
on comparable samples. On the contrary, if we consider data
of the fourth day we have 14 successes of 15 (95%), and we
can consider this test to be successful. In this case, on the basis
of the previous analysis we cannot hope to summarize all of
the needed information in a few dimensions (the model was
developed with 10 PLS scores, and we saw that with fewer than
about 8 dimensions we do not expect sufficient discrimination).
Nevertheless, an appropriate choice (manually trying various
possibilities) of the scores can give a good visualization also in
three dimensions: for example, inFigure 7 we plotted the
average of the nine groups of the first experiment (dot-centered
hexagons for all groups, and CS2 indicated by a solid bigger
circle), and we indicate with smaller open circles the measure-
ments for CS2 on the fourth day of the second experiment (the
three plotted PLS scores were chosen because they seemed to
give a good visualization of the data). The good agreement is
evident, and there is only one class of the model that overlaps

Figure 5. First versus second PCA score (correlation mode) for the
measurements on the first day for Miss (solid points) and CS2 (open
points). Different symbols indicate the three different production batches.

Figure 6. CS2 data of the first experiment used as a test on the model
developed in the second experiment (two clones, two times). Centers of
trial measurements are indicated by larger symbols: open points for fourth
day and solid for the first day. Smaller stars are the test measurement.
They are correctly attributed to CS2 on the fourth day (see text).
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with CS2 even using only three dimensions. This graph is also
interesting because it gives a visualization of the spread of the
data (showing only one data point wrongly assigned, designated
by the arrow). As the small circles correspond to data of three
different batches this seems to be quite a remarkable result.

CONCLUSIONS

A complete method, from sampling to data analysis, for the
classification of agroindustrial products has been proposed and
tested. We showed that PTR-MS can successfully be coupled
with data compression and class modeling methods to provide
a fast and sensitive tool for product discrimination based only
on nondestructive VOCs measurements. Internal cross-validation
and validation between different experiments give high and
promising success percentages. Moreover, we found indications
that differences due to shelf life and to different production
batches can also be determined reliably.

On the basis of our results we believe that the proposed
method provides a promising tool for quality, product, or process
control not only for breeding and genetics but also in practical,
industrial applications.

Vice versa (trusting the technique and analysis), our results
suggest a strong effect of the genetics on the volatile compounds
profile of strawberries, indicating that a proper control of this
point is crucial for the development of new varieties because,
whatever a definition of quality could be, surely, for food and,
in particular, for strawberry, it should include aroma.

The spectra used for the analysis described include chemical
information that can be used to understand the reason of the
observed differences. Even if several compounds can be
associated with some masses with reasonable accuracy, we
prefer, before publishing comments on this point, to extend our
experimental database on fragmentation in PTR-MS. Particularly
in the PCA covariance mode, the loadings produced by the
analysis preserve a reminiscence of the real spectra and can be
used to understand which are the compounds/masses that explain
the observed differences (25). In this work we measured a single
fruit for 4 min and allowed some more time to clean gas lines
between measurements (15 min for each fruit); moreover, we
did not use automatic sampling systems, but an operator had to
follow almost continuously the measurements. Nevertheless, the

whole procedure could be, in principle, computer controlled
from the sampling phase to the discriminant analysis and data
representation on the computer monitor. This is one of the most
qualifying aspects of the proposed method and could be the
basis for a complete automatic system for practical application
with a very short time from sample preparation to data
displaying. A last development we would like to mention is
that it is worth trying to correlate PTR-MS data not only with
the variety but also with other data (ripening degree, other
chemical analysis, sensory analysis, etc.). If successful, this
research will give a fast, nondestructive method not only for
variety identification but, more generally, for real-time product
evaluation.
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